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VARIATIONAL FORMULATION OF A 
MODEL FREE-BOUNDARY PROBLEM 

PATRICIA SAAVEDRA AND L. RIDGWAY SCOTT 

ABSTRACT. The purpose of this work is to present an error analysis of the 
numerical approximation by a finite element method of a free-surface problem. 
The analysis has been done in an abstract model which has many of the features 
of a free-surface problem for a viscous liquid. We study in this paper how the 
numerical approximation of the free boundary affects the approximation of the 
other variables of the problem and vice versa. 

We present the numerical analysis of a free-boundary problem that is in- 
tended to incorporate many of the difficulties found in a class of models of 
fluid-flow phenomena with free surfaces. One such phenomenon which mo- 
tivates the current work is the flow of a liquid constrained only partly by a 
container, that is, in which a part of the boundary of the domain filled by the 
liquid is an interface with another liquid of much smaller density, and for which 
surface tension plays a significant role in determining the shape of the free sur- 
face. One model for the behavior of such liquids is based on the assumption 
that the surface tension between the two liquids is proportional to the curva- 
ture of the free surface; the constant of proportionality is a physical property 
of the two fluids. This model has been studied extensively in recently years, 
both experimentally (cf. Jean and Pritchard [15] and Pritchard [19]), theoreti- 
cally (cf. Allain [2], Beale [4], Bemelmans [5], Jean [14], Pukhnachov [20], and 
Solonnikov [27]), asymptotically (Keller and Miksis [16]) and computationally 
(cf. Cuvelier [10], Ryskin and Leal [23], and Saito and Scriven [24]). Our pur- 
pose here is to establish a framework for the analysis of convergence properties 
of the computational techniques being used. The only previous work that we 
are aware of in this direction is by Nitsche [18]. 

In the first section of the paper, we define our model problem in classical 
terms. In the second section, we construct a variational formulation for the 
problem that has two new features. One is that it allows the existence of a solu- 
tion to be proved with weaker assumptions on the data than has been possible 
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before. But more importantly, it provides a framework in which a finite element 
method can be defined and analyzed rigorously. The third section of the paper 
carries out this analysis. Our variational approach is similar to one used in 
the code FIDAP [28]. Moreover, our analysis of this class of free-surface prob- 
lems has much in common with the theoretical studies listed in the previous 
paragraph, except that the Holder spaces used there are replaced by appropri- 
ate Sobolev spaces. This has the advantage of offering a framework in which 
finite element spaces that are typically used can be viewed as "conforming" to 
the theory. Unfortunately, the nature of the problem apparently precludes the 
use of the traditional Hilbert space theory; we require estimates for a power 
higher than two of the gradient of the finite element approximation. This is 
a consequence of the nonlinear relationship between the gradient of the field 
variable (which corresponds to the velocity variable in a flow problem) and the 
free surface. 

We shall make use of the Lebesgue and Sobolev spaces Lp(Q) and Wp (Q) 
respectively, 1 < p < oc, m E IN, defined for a bounded open set, ., in 
IRn, n = 1 or 2. These spaces are provided with the usual norm 11 IILP(Q) 

and 1 (wa) , respectively. W>(Q) is the space of those functions in W1 (n) 

which vanish on the boundary of Q in the generalized sense. The inner product 
in L2 is denoted by (I ) .). 

1. PROBLEM FORMULATION 

Consider a function y E W (O, 1) such that IIYWII (O, 1) < 1 , and related 
to this function define the following sets: 

l= {(xy) | 0<x < 1, 0<y < 1 +y(x)} 

and 
r ={(xy) 10<x< 1,y= 1+y(x)}. 

Consider also another function g E W] (Q), where W is some fixed domain 
such that Ql c W for all y under consideration, and suppose g(x, y) = 0 
for y > 1/2. (In the sequel, we shall choose p > 2; it will also be seen to be 
sufficient to define Q = [O, 1] x [O, 2] .) With these assumptions we define the 
following 

Model free-boundary problem. Find y and u such that 

Au = 0 in l, 

u=g onOAl, 

(1y ifs(x) = Ou(x, 1 + y(x)) VxE[ 1] 

[1 + y'(X)2]1/2 = 
VX 

= O.l 

Y(0) =YMl = 0. 
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The parameter s > 0 plays the role of the "surface tension" and n' is the 
outward normal vector to I,' Note that u is a scalar field and that in the 
balance of terms on the interface we are using a nonlinear term which is not the 
curvature of y. This is done in order to simplify the variational formulation 
of the problem. In ?4, we describe the simple modifications necessary to obtain 
results pertaining to models involving the curvature operator. 

In ?2 a weak formulation of this problem is proposed which is more suitable 
for discretization via variational techniques. It is proved in Corollary 2.1 that 
the weak formulation admits a unique solution (y, u) E W1 (0, 1) x WI(Q) 
for small values of the norm of g, provided that p E (2, P) for some P > 2. 
In ?3 we study the discrete approximation of this problem by a finite element 
method using piecewise linear functions. In Theorem 3.1 we prove that the 
discrete problem admits a unique solution, and in Theorem 3.2 and Corollary 
3.1 we prove the convergence of this method. One of the conclusions of this 
work is that it is appropriate to use the same order of piecewise polynomials to 
approximate u and y in order to obtain the optimal order of convergence. 

2. THE WEAK FORMULATION OF PROBLEM (1.1) 

A preliminary weak formulation of problem (1.1) can be given in the usual 
way by converting the two elliptic problems for u and y, respectively, as fol- 
lows. First introduce bilinear forms 

a(u, v) := Vu*Vv dx, 
2y 
1 

b(y, X) := s y'(x)x'(x) dx. 
o~~~~~~~~~~ 

Then our preliminary variational formulation is: Find y E W. (0, 1) and 
u - V E >1 (Ql) such that 

01 

a,(uv)=O VVEW q(fly), 
1 Ou 

'X51+Y()XX[ + IX22 0 
IO51) b(y, X) = ja t-(x, 1 + y(x))X(x)[1 + y (x) ]112dx VX e WI(O, 1). 

The shortcoming of this variational formulation is its reference to a quantity, 
0u/0ini, that is undefined for arbitrary u in the space in which we seek the 
solution, u. We now address this issue. (Our reasons for choosing non-Hilbert 
spaces in the variational formulation will be clarified subsequently.) 

If u is a sufficiently regular solution of problem (1.1) then Green's formula 
implies 

f1u XX[ YX2]1/2 
(2.1-1 (x, 1+y(x))X(x)[1+y(x)]dx 

(2.1) Vauv x 
e tt vx 1 +v ds Vu ) Vv dxx 

provided that v (x, I + y (x)) = %(x) and v = 0 on 0 fy Ty. 
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Lemma 2.0. For all X E W11 (0, 1) it is possible to construct an extension EyX E 

Wq1 (fy) whenever q < 2, such that EXI r = X and EyXI \r= 0. 

Proof. First, by one of Sobolev's imbedding theorems, X E WI' (0, 1) implies 

X E Wql-!q(O, 1) for q < 2. If X E Wql-lq(O, 1) for q < 2, we can extend 
X by zero to 0 f, where Ql = [0, 1] x [0, 1], and assure that this extension 

E WI -Il/q (Oo. By the surjectivity property of the trace operator, there is 

a v E WqJYf(Q) such that v I' = a . Let EX denote this extension, v . Since 
the embedding and trace are continuous operators, there exist C, CE < ?? 
independent of X, such that 

(2.2) 
IIEX%11w(no) < C IIXW1J- 1/q(0Qo) < CE X ilW(O, 1). 

(For details, see Grisvard [13] and Arnold, Scott and Vogelius [3].) 
Now we transform the domain Ql to ,y by the following change of vari- 

ables: 

(2.3) ( E o )(X Y)Efy, x= andy=(I+y(4))q. 

This induces a mapping on functions, v, on fl to functions, v^, on Ql via 

(2.4) v~g 0 = vg (1 + y(g)) ). 

If HYIIW' (O, 1) < 1, then the mappings (2.3) are invertible, and for any v E 

WqI (Ql) there is a v E Wq I(Ql) such that 

(2.5) v(x, y) = v(x, y/(1 + y(x))). 

Moreover, we have 

(2.6) IIVIIWIl(ny) 
< 

1i(IIYIIW. 
ol)l~l 

11 
^ 

11 Wql (Qo0) 
< dU(II Y 11 W (. 1 i lWl(y 

where ,u(t) is a continuous function for 0 < t < 1 and q may be any real 
number in the range 1 < q < 00. Now we can identify X with its extension 
E yX in fly by E yX := EX , i.e., 

(2.7) Eyx(x, y) = EX(x, y/(1 + y(x))), 

where EX was defined above extending X to fl. From (2.6) and (2.2) we 
conclude 

(2.8) lYXIwIl(',) ? /(IIYIIfwf(o l))IEXI wl(no) 
< CEI'(Ilyllgl (0,1))IIXIIW,1(0,1) a 

Remark. No extension is possible for q > 2, even for X E WI(0, 1). To 
prove this, pick a sequence Oj such that = 1 in [4, 4], 3 

j = 0 outside 
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[4 - 1/X, + 1/j] and Oj is linear in [4 - 1/X, 4] and [3, 4 + 1/j]. This 

sequence is bounded in W'(0 , 1). However, it is not bounded in Hf (O, 1). 
This can be seen either by direct computation using Fourier transforms or by 
observing that the Oj 's tend to the characteristic function of [I, 4 ] and that the 
latter is not in H2 (0, 1). Since the Xi 's do not remain bounded in Hf (O, 1), 
they cannot be extended boundedly to H I(o) [6]. 

Now equation (2.1) can be inserted in our preliminary weak formulation to 
yield our final weak formulation of problem (1.1) (for p > 2 and I /p + 1 /q = 
1 ). 

Variational free-boundary problem. Find y E WL (O0 1) and u E g e W' (Y) 
such that 

01 

(2.9) a(u, v) = O VV E 
Wq(y) 

b(y, X) = a,(u, EYX) VX E WI(O, 1). 

Remark. The problem (2.9) does not depend on the extension Ey because 

ay(u, El X-EyX) = O VX E WI(O, 1) 

for two such extensions, since ElX - EyX e W(q y) . Moreover, a,(u, EyX) 
can be evaluated via (2.1), that is 

a,(u , EyX) Vu * VEx dx =j E Xds 

= Jo a(x,1 + y(x))x(x)[ + y(x)2]112dx, 

provided u and X are regular enough. 
To establish the existence of a solution (y, u) of (2.9), we shall use a con- 

traction argument. Before presenting this result, some a priori estimates will be 
proved. First define the following seminorms in W (O, 1): 

IylfI(O, 1) = IIYHIILP(O,1) VY E WPI(O, 1) 1 <P < 00. 

The following is a simple consequence of Rellich's theorem; cf. Brezis [7]. 

Proposition 2.1. . Jw'(o0) is a norm in Wp(O, 1) equivalent to I IIW'(O,) for 
1 <P < 00. 

Proposition 2.2. The bilinear form, b, is continuous from WI (O, 1) x W,1 (0, 1) 
- IR. Furthermore, there exists a constant /3 < oo such that for all y E 

WL(O, 1) 

(2.10) IIYIIWI'(0O ) < f sup b(y, %) 
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Proof. The continuity of b is a consequence of H6lder's inequality. On the 

other hand, Proposition 2.1 implies that for all y E WO (0, 1) 

IYWOO(0 I) C IHYHI1L(OO) = C SUP (Y X f) 

fEL'(O, 1) H1fH1L1(o,1) 
f#0 

-C sup -(Y' ' 7) < 2C sup Hf(Y. f L) 
feL'(O,1) H1f HL1(0,1) fEL(0,1)1f E 11LI(0,1) 

f#0 f-#5o 

where f:= f (x) dx and we have used the simple inequality 11f H f -fL'(o, 1) < 

2H1fIIL'(o, 1) For any f E L1(0, 1), there is a X E WO(0, 1) such that x'(x)= 

f(x) - f . Using again the fact that W H"(0,1) and H I Hw(Ol) are equivalent 

norms in WI(0, 1), we have 

I1YH1W'(O,lI) < C sup fh Y'(x)x'(x)dx 

O#XEWI(O 1) HXHL(I,1) 

<C sp b(y,5 ) 

0xEWI (o, 1) wj'(O1) 

C 
which proves inequality (2.10) with fi = C. a 

Remark. In the previous proof and in subsequent estimates, C denotes a gen- 

eric constant that may increase from line to line but is dependent only on the 

stated quantities. 

Proposition 2.3. Suppose HY H I W(o 1) < 1/2. Then a is a continuous bilinear 

form from W1I(n,) x W1 (fy) -* IR, where 1/p + 1 /q = 1. Moreover, there are 

constants a < o0 and Q < 2 < P such that for all u E Wl (Qy) 

(2.1 1) u ) 0?su(Qy) a Wq / 2,v) 

whenever Q < p < P. 
Proof. The first part of the theorem is easily proved using Holder's inequality. 

The second part will be proved using a result of Meyers [17] concerning second- 

order elliptic divergence equations with bounded, measurable coefficients. To 

use this result, we transform the domain ny to no, using the change of vari- 

ables (2.3). Thus, for all u E J'K 1(Qy) and v E Wq I(Qy), we have u E W (Qo) 

and vi E WI1(Qn) such that 

J2.12 aEv2 
(2.12) ay(u5 v) = A1j(~, 5 ; y) Oi 

^ 
Oj 

^ 
d~diq c5i~ ^; Y), 
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where O1 u = a u/lO and 02u = Ou/0q, and 

(2.13) AI(4q; Y) = I + Y(4), A22(4q; Y)= l+y(g) 6 

A12(4, C; y) =A21(4, C; y) = -y q 

Note that A = (DD T) I detDI, where D is the Jacobian of the mapping (2.3). 
For all y E W I(O, 1) such that IIyII w (O 1) < 1/2, Aij is well defined a.e. in 
QO for 1 < i, i < 2, and the following holds: A is a real, symmetric matrix 
such that 

(2.14) HA > O such that A1(, C) zz > Az2 Vz E IR2, a.a.(, C) E 

(2.15) 3 M < oc such that max gA.ij.LLOO(0) < M. 

Indeed, (2.15) is a consequence of the assumption IIYIIW' (O 1) < 1/2, and (2.15) 
implies (2.14) as follows. The eigenvalues of (Aij (, a)) satisfy Amin(' 77) < 

''max(i' I) < 2M. Since detA = 1, we have Amin = Am 
I 

> 1/2M =: A, which 
implies (2.14). 

From Meyers [17] it follows that there are real numbers Q < 2 < P and a 
finite constant a such that 

(2.16) IjU^1w1(no) < a sup 

whenever Q < p < P. In view of (2.12), the result follows from (2.16) and the 
equivalence of norms (2.6). a 

Existence results. For e > 0, consider the following set 

= {(Y. u) E W (O 1) X WP (y): IIY II (Ok) < 2' IUIIWP(fy) < ' 

and let T be the following mapping: given (y, u) E J/, let 

T(y, u) = (T,(y, u), T2(y, u)) = (y, ii), 

where (i, i) is determined as follows. First, y E WO (O, 1) is found satisfying 

(2.17) b(y, X) = ay(u, EY(X)) VX E WI(O, 1). 

Then a - g E WI(0) solves 

(2.18) a,(a,v) =O VVEWq(Q?) 

Lemma 2.1. There exist two positive real numbers a and e and a real number 
P > 2 such that, if II g IIHW; (Q. ) < i, then T is a mapping from Ve -* V, whenever 

p E (2, P). 
Proof. Let (y, u) E VJ". We prove first that problem (2.17) admits a unique 

solution 2 E Wl (O, 1). Uniqueness follows from Proposition 2.2. Existence 
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can be verified as follows. Let (0 be the linear functional from WJJ (0, 1) to JR 
defined by (x) = a,(u, Ex). Then ( is continuous from W,'(0, 1) IR in 
view of (2.8): 

ko(X)J = la,(u, EX)I < 
CIIuIw,(0,)IIEYXIIw,(Q,) 

< C#(IIyI~w (0,1)) IIUIIWV(QY) IIXIIW'j(O, 1) < Ce IIXIIWj'(O, 1)' 

where the last constant is of the form Cg(l/2). Since p E W11(0, 1) c 

W2 (0, 1)', existence of a solution, y, in WJ1 (0, 1) is standard; cf. Brezis [7]. 
The fact that this y resides in W1 (0, 1) follows from Proposition 2.2 via a 
density argument. Applying Proposition 2.2 again yields 

IIIw' (oI)?fl sup b' W, ') 

-2.19) sup ay(u, Ey(X)) < CA 

O06XE WI (O 1) I11vo1 

Choose e such that 
,e < (2CP)-1 

Thus, 1IYJ1J w(O,1) < 1/2. 
A similar argument now shows that Proposition 2.3 implies that there is a 

0 

unique solution w E W1 (Q2) solving 
0 1 

a,(w, v) = -ay~,v E qy) 

and it is bounded by 

11 11 ~~~~a,(g, v) 1 IWIiwII1(n) ? a sup <2g v a IjgIjW1(Q-). 

Therefore, iu = g + w satisfies equation (2.18) and 

IIf4IIWI(fQ ) < (1 + a)lgIIw'(Q*). 

Now choose ( such that ( < e/( 1 + a). Hence, Ig I IwI (a.) < ( implies (y, u) E 

VJ.n 

Although the set V, is appropriate from a physical point of view, it is not 
convenient for measuring the difference between two solutions because it is not 
based on a linear space. For this reason, we introduce the set 

V = {(Y. U~) e W' (O 1) x WV(LO) II Wi (0 1) < 2' IIUIIw'(Q0) < e}. 

There is a natural mapping between V, and V, induced by (2.3), namely 
(y, v) -* (y, v'), where v^ is defined by (2.4). The inverse mapping is well 
defined in view of (2.6). A mapping T can be defined correspondingly via 
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However, note that the" " ̂  on v refers to the mapping (2.3) generated by y, 
whereas the one on T2(y, v) refers to the one generated by y = T1 (y, v) . The 
result is a mapping related to T that maps a subset of a linear space, VJ/, into 
itself. 

Theorem 2.1. Let P and ( be as in Lemma 2.1. For all p E (2, P) and all 
g e Wp (2*) such that IlgIIw,1(0*) < 6, the mapping T is a contraction from 

V,E--/ V with respect to the norm 

(2.20) 11 u)III=6IIYIIW(Ol) + 
IIUIIw1(0o) 

for e sufficiently small. 

Proof. By Lemma 1.1 we have that T: V, VJ for e sufficiently small. In order 
to prove that T is a contraction, take 2' = Tl(y2, u') and W' = T2(y', u'), 
where (y', u') is any element of V, j = 1,2. Let y = 1 _2 Then 

0 ~~~~~~~~~0 
y E W1 (0, 1), and for all X E W (0, 1), y satisfies 

1 -.2 1l 1 2 2 
b(yX)=b(y -y 2 

,)a(uE Ex; )- a(u Ex; ) 

2 = J E Aij(4, ; yl) Aju~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~diE% d~~~~~~~~~~~ dr yX 

2 

- E A1j(4, ; y2) Aju 9iEx d~dij 
0 ij=1 
2 

= j E [Aij(4, C; y2) (9j , 2 ;y)]auis% Xd 
O ij=1 

2 

+j > A1j (4, r/; y2) [aju - I A2]O1jEx d2d ii. 
0 jj,=1 

In view of (2.6) and (2.13), there exists C < oc such that 

Jb(y, X)1 I C[ 11aU111W1(QO) 112' IY2 Y1 w ( 1) 

+[ 8 
lyl luull 211 

211W1 
< C[ e 12' 1 - Y2' w1 (0, 1) + I 

u1 - (2Ilw'(0 )] IIXIIWj(O 1)' 

since (y2, u ) E VE and (y2, U2) E V implies that IIY2jWl < 1/2 and 1 1 2 II2'2Ilw~~~~~~~~~~~~O(o, 1)< 

IIl&1 IW'(no) < e. From Proposition 2.2, we conclude that 

(2.21) II2'Ilwi(o 1) < C/)((8 II - Y IIWI (O 1) + IUI - UI1WI(Q )). 
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To bound the difference between a1 and u2, we do the following. Note first 
that a1 and a2 satisfy 

01 

au, 
41 

yl 0 VV' E W(Q) 

au2, 0; y2) =0 WV E Wq (QO). 

Because we assumed that g(x, y) = 0 for y > 1/2 and yj(i) = 0 for i = 0, 1 

and j = 1, 2, we have gl _2 e (Q(O), where the different "hats" refer to 
2 0 - 2 

different mappings (2.3). Thus, u := ul - u2 E We (QO) and satisfies 

l A 1 -I l 2 - 
au, V; y ) a(u, V; y)a~u V; 

j-1 j2,0 

_( V; yl= a(fl, V; -2 _a(>,v 

= Q E[Ajj(4, q; y2 _ ij(4 q; )] U Vdd 

Therefore, 

la( v ),l < CpIy _ Y22llW ( l2lw(Qlill( 

< Ce IIY1 - Y2 Iw1 (0, l)IIUIIW,(Q20) 

- Ce IIYIIWj (Q,1)IIVIIWl(Q0) 

Inequality (2.16) then yields 

IjfaIIWl(%? <a sup H< Ce allyllVU,i(,). 
11^11 < ;~ a(K IW") - 

c 11 1 

Applying inequality (2.21) gives 

IIaIIWIl(n0) < Cafl[C 11' - YW (0 1) + u -a w()]. 

Inserting this inequality and inequality (2.21) in the definition of 111 I we 
have 

IIIT&l, u1) - T(y2 u2)I < C(l + a)fleIII(y1, ul) - (y 2 )II 

Choosing e < (C(l + a)fl) we conclude that T is a contraction from V, 

Corollary 2.1. If IIgIIW (fI2) is sufficiently small, then for all p E (2, P) problem 
(2.9) admits a unique solution (y, u) E VJ which can be calculated by a fixed 
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point iteration, 
i+ I i+l i i 

(Y 5u )=T(y 5u ) 

starting with any (yA, u0) E Ve. 
One choice of yo and uo can be the following: yo - 0 and u0 the solution 

of 

(2.22) 
Au=O inQ0, 

u=g onO(90. 

Clearly, 11 u011 WI(n) < Cjjgjj w(n*), so choosing 3 as was required in the proof 

of Lemma 2.1 yields (y2, u0) E Ve. 
We conclude this section with some remarks regarding its results. 
(1) We have not proved global uniqueness, and there may indeed be solutions 

of larger norm even for small data. 
(2) Regularity of solutions can be studied using the techniques in the works 

cited at the beginning that use Holder norms. The solutions obtained by those 
techniques, when applicable, are of course identical to the weak solutions ob- 
tained here. 

3. THE VARIATIONAL FORMULATION OF THE DISCRETE PROBLEM 

Let 7h? ? < h < ho < 1, be a quasi-uniform triangulation of Q0, i.e., 

such that the following regularity condition is satisfied: the triangles K E 7C 
meet only in entire common sides or in vertices; each triangle K E 7rh contains 
a circle of radius c h and is contained in a circle of radius c2h, where the 
constants c > 0 and c2 < 0 do not depend on K or h. 

We denote by 7h the triangulation obtained by transforming the vertices of 
0 

Xh via the mapping in (2.3). More precisely, let Fy denote the continuous, 
0 piecewise affine interpolant of the mapping (2.3) with respect to the mesh 7th, 

and let 7ry be the image of 7rh with respect to Fy. Denote by Qh the image 

of Q, with respect to Fy . For each triangle K in 7r50, denote its vertices by 

nK, j= (4K, i IlK, j) for j = 1, 2, 3, and let nK i:= FY(iiKj). The mapping 

Fy is given on each triangle by 

F IK( ,? ) = DK (q,?) + dK V(4) E K 

where DK is a 2 x 2 matrix and dK E R2 When it is not confusing to do so, 
we shall refer to the vertices by a global node number k = k(K, j) . 

Proposition 3.1. If y E J1Q(O. 1) and IIyIIw' (O 1) < 1, then the mapping FP 
is invertible and 7ry is a quasi-uniform triangulation. Furthermore, the entries 
of the Jacobians, DKI of FyIk, together with their inverses, are all bounded by 
C(1 - 11Y11wl W(O1)) 
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Proof. Let c = II IIWI (O 1) < 1. Let k = k(K, j) and k' = k'(K, j') denot 
node indices of two distinct vertices (j $ I') of a given triangle. We have 

yk Yk'I = I| k - ?k' + Y (Qk>k - (4k )k 

= I(lk - ?k)(l + Y(4k')) + Ik(Y(4k) -Y(41M 

? I (k - k)(l + Y(4k')) I - I k(Y( k) -Y(40)I 

> (1 - C)lk-k'VI - Clqk(k 
- 

4 

Since Xk = 4 we have 

IXk -Xk1 I + Iyk - k' l > (1 1-C) (I qk 
- 

VI + 4t -~ Xk'|) 

Similarly, we can estimate that 

|Xk -Xk' I+ Iyk -Yk'I <5 (1 +C) (Ink 
- 

k' [+ 4 Xkd)- 

Thus each triangle is mapped onto a triangle of comparable dimensions, so tha 
7r is a quasi-uniform triangulation. Moreover, this also shows that each Fjy 
and hence F', is invertible. 

Since FY (ii 3) = ni3, we may write 

F|IK(( , i) + i3)= DK(4 ?1) + ni,3. 

Since Fy(ii j) = nij for j = 1, 2, we must have 

DKC'=C' Vj=1,2, 

where C = nij-ni 3 and C' := nij -nii3. If we let C (resp. C ) denote the 

matrix with columns Ci (resp. C' ), then we have DKC = C or DK = CC-1 
Thus, we also have DK1 = CC1. From these representations and the bounds 
above, the claimed estimates on the entries of DK and DK follow easily. n 

As a consequence of Proposition 3. 1, if I IY I IW' (O 1) < 1 , then the mapping F2 

induces an isomorphism, v -- vi := v o F1, of the spaces WJl (nh) , ( 
Moreover, we have the estimates 

(3.1) ||JV IIWI(Q*h) < Y(IIYIIWOOO1) ) 1<q<X 
IIIW( < ' (IIYIIW1 (Ok j))lIVIIW1(Qh) 

Note that the transformation Q -+ Qhis different from the change of vari- 
ables (2.3) that we used in the continuous case; to distinguish one from the 
other, we denote by (xk, 9) the point in QL related to (x, y) E Q0 by 

Fy(x , 9) = (x, y), 

whereas we denoted (2.3) via (x, 9) (x, y). The transformation FN is 
introduced in order to transform the triangles K into triangles K and the 
space P1(K) into P1(K). This would no longer be true if we applied the 
transformation (2.3) to the triangulation 7h. 
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Related to the triangulations 7h? and h , respectively, we define the following 
spaces: 

h = {V E C (Q E P1 (K) VK E 7h 

Vh = { VE7:V(fl) =O Vn1 E QY}, 
Vh = {V e C0(Q0)V|K E P1(K) VK e h 

V= {IV E V>: v(n.) = 0 Vni E 

Let {4i e [0, 1]: 1 < i < lh} denote all x-coordinates such that %4, 1) is 
a vertex of a triangle K e Uh i.e., Xi = Xk for some k. Decompose [0, 1] = 

Ul=1 l[4 l, X], and relate to this mesh the following discrete space: 

0 1 

Sh = {Ye C (0 1): Y ,(]eP([) i i]), O h +E1, 
and y(O) = y(l) = O}. 

These are the spaces to be used in the variational approximation of (2.9). 

Piecewise linear interpolants. Given y e Wa (0O 1), 1 < p < oc, we define ih s 
to be the usual piecewise linear interpolant, based on the knots {Do: 1 <m i < l }1 
from C0?(0, 1) to {y e C0?(0, 1): Yl~g (]e P1 (K1i- 1 X]}. If y e Wcfc(0, 1) 

n Wl (0, 1), the following estimate holds: 

(3.2) || y-h Y ||WhO, 1) < Ch 11Y 11W2(o, 1) 

For functions v e J'J(Qh) with p > 2 we shall use the usual piecewise 

linear interpolant IhY: W1 (Qyh) J7VY, namely 
mh 

(3.3) Iy(> = =v(n=) v , 
k=l1 

where {vb : 1 <k < mh} iS the usual Lagrange basis of $he defined by 

vk(nk/) =3kk, 1 <k, k < ma. 

Note that, for any v e (Q ) 

(3.4) 12?j - IhiV = V 

As usual, we have 

(3.5) |W- Ih? W | 1) < Ch IwI 11 1). 

Also note that Ih(vLc(x, 1):0?x?I}) = (Ihv)>{(X 2) wx?}' so our notations for the 

boundary and interior interpolants do not conflict. Finally, let g,' = I,5g; if 
g e W2(Q*) for p>2,then 
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Let Xh E Sh. As Xh E WJI(0, 1), for 1 < p < x, we can consider the 
extension, EXh, of Xh to Q0 defined in the proof of Lemma 2.0. We know 
from the continuous case, (2.2), that EXh E W I(Q) for q < 2. In order to 

q~~~~~ construct a piecewise linear interpolant of this extension to J/, we shall use 
a variant of a piecewise linear interpolant for "rough functions," which was 
introduced by Clement [9]. The presentation that appears in Scott and Zhang 
[25] will be used. -They show that there is an interpolant, Jh' that is given by 

mh 

Jv Lk(V) V 
h 

k=1 

where Lk is a linear functional given by a weighted integral along an edge in 
the triangulation having nk as a node. We can pick these edges arbitrarily, so 
that for all boundary nodes, nk E {(x, 1): 0 < x < 1}, we can require all the 
edges to lie on the boundary segment { (x, 1): 0 < x < 1 }. Moreover, Jh is a 
projection that reproduces any piecewise linear function locally; in particular, 
JhEx is an extension of x to VJ?. Finally, it is shown in [25] that 

|| JhVH|| Wq (K0) < C H1V 11 Rl (0o) ' 

(3.7) - JhV (no) < C h JHVJ w2(Q)' 

where C is a constant independent of h or v, and 1 < q < 0o. Now we can 
define the "discrete extension" E xh of Xh to the whole domain Qh by 

Ehxh = JhExh. 

Clearly, Ehxh E V/7, and from inequalities (3.7) and (3.1) we can assert the 
existence of a positive constant C, independent of h and Xh, such that 

(3.8) HIExh 1W'(Qh) < Cu(JHyJW1 (O' 1)) IlXhHWll'(o, l) 

The discrete free-boundary problem. We pose the following discrete problem 
associated with the quasi-uniform triangulation 7rh' 

Find oh e Sh and Uh E g,'h ? Jh such that 

(3.9a) aYh(Uh, Vh) = 0 VVh E Vh, 

(3.9b) b(yh , x) = a (h F >h) VX E Sh. 

Remark. In view of (3.9a), the right-hand side of equation (3.9b) can be written 
as 

y(h' Eyh) = y(h ,Ehx) 

for any extension Eh, e.g., we can take 

EhX = Z 
X(k)Vk ' 

nkkE{(X,l): O<X<I} 
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since Ehx - E 'X E W (Q0,). Thus, the right-hand side of equation (3.9b) can 
be easily computed. 

To prove the existence of a solution of the discrete problem (3.9), we need 
to prove a discrete version of Propositions 2.2 and 2.3. 

Proposition 3.2. There exists a positive constant /1, independent of h, such that 
for any Yh E Sh 

(3.10) 12'Yh w'(o, 1) < sup b(yhI Xh) 
O#IXhESh HIXhIIW<(o,1)' 

Proof. Let Ph denote the projection from WJ< (0, 1) to Sh defined by 

b(PhX-X, a) =O aV E Sh. 

The results of Douglas, Dupont, and Wahlbin [11] imply that for any x E 
WI(0 1) 

(3.11) IIPhXHIWI'(0, 1) < C IIXH W '(O, 1)' 1 < < 00. 

For Yh E W (0, 1), inequalities (2.10) and (3.11) with p = 1 imply that 

11YH'(0 I) < U b(yh Ix) -~SUP b(yhIPh x 

(312 Wll (O, 1 ) IX H WI (O, 1) O 0xEW' IVO) II WIH (O, 1) 

C3 sup b(yh I Phx) cj sup b(yh, xh) 

Choosing the new /1 = C,/ gives us inequality (3.10). El 

We now prove an inequality analogous to (2.1 1) for the discrete case. Since 
this result is a special case of a result of independent interest, namely a stabil- 
ity bound for the Ritz projection with respect to a bilinear form having only 
bounded, measurable coefficients, we give the more general version first. 

Proposition 3.3. Suppose that QO is a convex polygon and that the bilinear form 

2 

a(u, v) = f E Aij(4, q/) aiu ajv dcdq 
Q0 i J=1 

satisfies the conditions (2.14) and (2.15). Let Vh denote piecewise linear func- 
tions, on any quasi-uniform mesh, that vanish on the boundary. Then there are 

0 

constants a < oc, ho > 0 and 2 < P such that for all 0 < h < ho and uh E Vh 

<uH1()?a SUP a(uh , Vh) 

O$hVh WV(hj) 

whenever 2 < p < P (q is the dual index to p, i.e., q = p/p - 1). 
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Let Rhu be the Ritz projection with respect to the bilinear form a(u, v) of 

an element u E W2(Q0) on Vo, i.e., Rhu is the unique element of Vo which 
satisfies 

a(u - Rhu, v) = 0 V E W2(Q0). 

Corollary 3.0. Under the assumptions of Proposition 3.3, the Ritz projection is 
stable in W1 (Q), i.e., there is a positive constant C, independent of h and u, 
such that 

IIRhuHIW1(Qo) < C 
IIUIIWI(00) 

, 2 < p < P. 

This follows from Proposition 3.3 by applying the definition of Rh and 
Holder's inequality: 

IR huHWq(uo) < a sup a(R hu 5vh) 
h~~~~~0 UI11 WW'(Qo)- 

?A v a, 

OvheV E V h qW(S) 

Ce SUP a(u, vh) 
-a sup ?~~~ C ~uIW1(Qo). 

O4Vh EV Vh wq(0) 

In view of the discussion in the proof of Proposition 2.3, the following is an 
immediate consequence of Proposition 3.3. 

Proposition 3.4. Suppose 11 Y 11 w' (o 1) < 1/2. Then there are constants a < 00 

and 2 < P, independent of h, such that for all uh E Vh 

(3.13) 1 uhII1(0) <a sup &(u , Vh; Y2) 

O$4Vh EVh W~~j 

whenever 2 < p < P. 

Proof of Proposition 3.3. The proof is based on the ideas of Meyers [ 17]. First 
we establish the corresponding inequality in the case that the bilinear form in 

01 0 
question is much simpler. Consider the Ritz projection Rh: W2 -' Vh defined 
by 

(V(Rhu-), Vvh) = 0 VeVh, 

where (a, .) denotes the vector- L2 inner product on Q,0. Rannacher and Scott 
[21] proved that 

(3.14) Ru II( ? C , 2 <p < oc. 

An argument similar to (3.12), using (2.11) or (2.16) with 2 0, shows that 

(3.15) <uhO ?K(p) sup (Vuh vlh) 
J'V>10) 0$h ' HIvhI H 
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for all 1 < p < o,where 

K(P):= aPIIR*I ap'(O sup(2) 7~l n)lU (( 

Here, we recall that 

11 UIWPQO (0Q 1~ 1d)x WI~o 
(f 0 dx) 

and we note that the constant ap from (2.16) was observed to be log-convex as 
a function of 1/p by Meyers [17]. 

We now wish to show that HRh ?,o I 0 is continuous as a function 

of p. To use Banach space interpolation theory, we view R* as inducing 
a mapping, h Vu - Vuh, of LP(Q)2 to itself. More precisely, given 
F E LP(Q)2, let uh(F) E v5 solve 

(VUh, VVh) = (F , VVh) VVh E Vh. 

Then 3,*(F) := Vuh . Similarly, we can let u E Wp>Qo) solve 

01I 
(Vu, Vv) = (F, Vv) VV E Wq(Q0), 

and we have from [16] that 

IIUIII 0 < aPIIFLP(n)2. 

Therefore, 

MI FI P(n)2 < C(p) IIFILP()2 

where C(p) < Cap and C(2)= 1. 
Using operator interpolation, we conclude that 

M|S F11[ 2 (n)2 L(n)2],q < C(P) IIFIIL2 (n)2 L(n)2]'q 

Whether using the real (with appropriate second index) or complex interpolation 
method [6], 

( ) FIL2(.-0)+Pe(n)2 < I|FK|[L2(n)2 LP(n)2]0 < c(P) |FH|L2(I_0)+P0(n)2 

where c(2) = 1 and c(p) is a continuous function of p near p = 2. Therefore, 

R*1oI ? < 
(p)2C(p), p = 2(1 - 6) + P. 

Thus, for all e > 0 there exists P > 2 such that K(p) < 1 + e for 2 < p < P 
where e and P are independent of h. 
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We now consider the general case via a perturbation argument. Define a 
bilinear form B: WlI() x Wl (QO) -1 IR by 

ll(u, v) := (Vu, Vv) - a(u, v), 

where M satisfies (2.15). It follows from (2.14)-(2.15) that 

where the eigenvalues of B are in [O, 1 - A/M] a.e. and A satisfies (2.14). 
Note that A/M = 1 /M2< 1/2. Therefore, Holder's inequality implies 

(3.16) B(uh, Vh) ? (< -M) -A)UhI WVhH II 

where Kp is a smooth function of p (near p = 2 ) satisfying K2 = 1. Using 
the identity 

(Vu, Vv) = l(u v) + a(u, v), 

together with estimates (3.15) and (3.16), yields 

(K1 - cP(1_ ))I~uhIIl ', sup a(uh, Vh) 

K(p) -K R( 
(o - 

M) lhwpf0 M 
0o IINI 0 

w(n) 
O$4Vh EVh q0 

In view of the continuity of K and K and the fact that K(2) = K2 = 1 

there exists P > 2 such that for any p E [2, P], 1/K(p) -Kp(1 - A/M) > 0. 
Choosing 

a -p 
K(p) 

(kP) - M[1 - Kp ( - A/M)K(p)] 

we complete the proof using the equivalence of norms 

11IWp(Qo) 
- - 

1I 1(Q) and 11 K'W(no) 
- 11 K 11o. 

for functions vanishing on the boundary. o 

Proposition 3.5. Suppose H1Yh !wl (o, 1) < 1/2. Then there are constants a < oo, 

VYh 2 < P and ho > 0 such that for all 0 < h < ho and for any Uh E Vh 

ah (u h 5Vh) 
(3.17) Wu h hiv( h) a sup 

OweVh E Vh ph 

whenever 2 < p ? P. 
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Proof. Transform the bilinear form aYh to a bilinear form in Q0, that is, 

Nh 

Y(h 
v 

hh) vhJ K *VVhIKdxdy 

(3.18) Nh 2 

- Zf ZA1M q; ml &l ham hd~d 

-:ah(Uhvh; Yh) 

where Ah|K = (DKDT) | detDKI (cf. Proposition 3.1). In view of Proposition 
3.1, we may apply Proposition 3.3 again. The proposition follows from the 
equivalence, (3.1), of the norms lVHIIWI( h) and Iw'(Q). ? 

Define 

h {(yh' Uh) E Sh x Vh1h HYhw' (o 1) < 1/2, ||Uh|W1(gh) < C), 

and consider the transformation Th that associates with an element (yh' Uh) E 

Vh an element (y* , u*) which satisfies 

(3.19) b(y* y Xh)= a (u hEjXh) XhESh, 

* Y.2h YJh su hh Uh E g Vh such that ay* (Uh Vh) = 0 VVh E Vh 

Proposition 3.6. Let p be as in Theorem 2.1 . There exist two strictly positive 
constants J and e such that if 

llgllw'(Q*) < 6' 

then This a mappingfrom h - V- h . 

Proof. Let (Yh' uh) E Vh. The variational problem, to find Y* E Sh such that 

b(yh Xh)= aYh(uh ,EYhXh) V Xh E Sh, 

admits a unique solution in Sh because b is a positive-definite, bilinear form 
in Sh x Sh and the functional 

k(Xh) =a (h Eh) 0 % Yh (hEyh % 

is continuous from Sh to IR. From inequalities (3.10) and (3.8) we have the 
following estimate on * 

(3.20) 11Yh`1w' (o0l) ? C3I1(1Yh1w(o0l)) 11Uhjw1(nh) < Ce. 

Choose e such that Ce < 1/2. Hence H1Yh* HW' (o l) < 1/2. 
Next we bound uh. As a is a positive-definite, continuous bilinear form 

on Vh (Qy ), there exists a unique Wh E Vh (Qy*) such that 

aY* (Wh Vh) = 
-ay*(gh', Vh) VVh E Vhh. 
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In view of inequality (3.20) for y* , Proposition 3.5 can be used to bound 

IIWhIIW1(nh*) 

||Wh|W1(nh) < Ca HIghh 11 WI (fh) 

Let u wh + gh; then 

||uh* Wl(Qh*) 
< (1 + Cax) 11 gh 11W1(Qh) 

From inequalities (3.6) and (3.20) and the assumptions that (rh' uh) E V', and 

IIgHw1(n*) < 3, we find that 

iiuhilw1(n) ? C3. 11h 11W (Qh* 

Finally, choose 3 such that Cd < e. Hence (y*, uh) E EQ. 

Theorem 3.1. If the norm of g is small enough, Th is a contraction from Jh 

Vh for the norm III 1 

The definition of J/h and the proof of this result are similar to the continuous 
case. 

Corollary 3.1. If 11 g 11 is sufficiently small, problem (3.9) admits a unique 

solution in V.h which can be calculated by a fixed point iteration, 

(h 'Uh ) (h, Ah) 

whenever (y 0, uh) E h 

As initial data (Y1?, uh), we can choose y - 0 in [0, 1] and uh as the Ritz 
projection, R u 0 of the solution, u0, of problem (2.22). Clearly, for h small h 
enough, (uh, yh) E h 

Convergence results. 

Theorem 3.2. If the small-norm solution (y, u) E V, of problem (2.9) for p > 2 
satisfies y E W2 (0, 1) and e is sufficiently small, there is a constant C < xc 
and a strictly positive ho such that for all 0 < h < ho 

Iy- YhH W.'(0, 1) + 11HU - 
hIW1(no) 

(3.21) ?C(h hyHlW2 (0,)+ + inf. IUvHillwv(fo)) 

where (uh, yh) is the small-norm solution of the discrete problem (3.9). 
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Proof. Let (y2, u) E VJ be the solution of problem (2.9), and let (yh' uh) E VJh 

be the solution of problem (3.9). Since EXh - JhExh E Wq (), we have 

b(y- h Xh) = ay(u, EyXh) - a(uh EhXh) 

= a(u~, EXh; Y) -a h(uh JhEXh; Yh) 

= a'(u, JhEXh; Y) - ah(uh , JhEXh; Yh) 

= a(u~, JhEXh; Y) - ah(u, JhEXh; Yh) 

+ah( U-Uh JhEXh; Yh) 

2 
= ]| Z (A(, ; y) -Aij(, ; Yh)) ai& aj(JhEXh)d~dj 0 i,j=l 

+ ah(-Uh JhEXh; Yh) 

= | (Aj - ; y)-A( /; y)) ai aj? (JhEChI) dIdI 

Ib+|-hXh)I ? ChIII( 1)+ I; r-IIW(, 1;)) IIUI( IIJhEhII 

+ ah(u- h JhEXh; Yh) I 

The representations+for A and Ah (see (2.13) and (3.18), respectively) imply 
that 

ij ij 1;~~ YJ " PhIly~0 IIYhIIW.'(O,1))I- IJv~(,) (3.23) b~ig-4 "h' Xh) - bi(y- rh' Xh) -bChlyl- 2 Xh ), 

Combining the estimates (3.23) with the identity (3.22) yields 

lb(y- Yh Xh)I < C(hllyllw2 (0, 1) + II11 IW y01) IUIIlQ)IJE IW(o 

+ la (u -U h 5Jh E~h; Yh) I 

< C((hIIYIIw2 (0 1) + IIY YhIIwi(0,1))IIUIIW,(Q0) 

+ II I UhI h II WpI (Qo) 11 Yh +1 W (O 1)) I1 Jh- E h II Wql (Qo) 

<C((hl11Y11W2 (0, 1) + 11Y y -y11 w (0, 1)) 11U11 w Wp(no) 

+ 11 U- U h 11 Wp1 (Qo) 11 Yh 11 W.1 (0, 1)) II~h 11 WI' (0, 1) 

Let V/ E Sh .Since 

b(V Yh 5 %h) = b(y -Yh 5 %h) -b(y -, %/5h) 

Proposition 3.2 and Holder's inequality imply that 

11IV Yh I I w01 (0, 1) < (^ 0YIW (O. 1) + II Y Yh 11 W01 (0, 1))lll Wp (no) 

+ II 1 UIWP1 (Qo) 11 Yh 11W01 (0, 1) + II Y -V WIIW (0, 1)) 
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Subtracting and using the triangle inequality, we find 

IIY - YhIIW1 - CIIuIIW1(o)) < C(hIIYIIw2 (o 1)IIiUIIw1(Q) 
+ 11U - UhIIW1l (QO)IIYhII W'(O 1) + I1Y - 

VIIW.(O,1)). 

Choosing c appropriately, we find 

IIY - Yh 11 W (O, 1) < C(Qh1IIyw2 (0 1) + IIU - Uh IIW1 (o) + IIY y 1I W- (I1))I 

Choosing V/ = Ihy and using (3.2), we have 

IIY YhW' (0, 1) < ~hIIyIIw2 (0, 1) + IIU - UhI IW1()) 

Next we bound II U -h II Wl ( o) Using Proposition 3.5, or equivalently Propo- 

sition 3.3, we find for arbitrary 3h E e) Vh that 

=I~h - UhII1(~\) C sup ah(oh - 
Shp W hh 

; Yh) 

IIWh (no) #ESU IIWhI h 1W(n0) 
O#WhEV~~ IIWhIEw(h0) 

-C SUP ah (h WU wh; Yh)+ah(& wh; Yh) O#WEV III hI q w((0) 

- C SUP ah(vh - wh; Yh) + &h($, wh; Yh) -(z, Wh; y) O#WhEV ~ hIIWhI1w(no) ?3Ew~h h q QO 

As above, we have 

Jah(N, W h; Yh) -a(u5 wh; Y)I 

Q J Z(A J ; Yh) -AlI( 1; y)) iJw adWhd~d?1 

? C(hIIyIIW2 (0 1) + II1 - 
YhIIW.'(O, 1)) 11 IIIWPI(QO) IIWhIWq<(QO) 

By Holder's inequality, we thus find 

IIVh - hIIW 1(QO) < CIIN - UIIWPI (QO) 

C(h11y11w2 (0 1) + 11 Y YhIWw' (o 1)) IIWIIWP1(no) 
From the triangle inequality, we have 

||U - UfhIIW1(n ) < (1 + C)lh - UIIWp,(no) 

+C(hllIIyIW2 (0, 1) + II Y Yh 11 W.' (0, 1)) II1I WP1 (no) 

Applying the previous estimate for y - Yh and choosing c sufficiently small, we 
find 

II U Uh II W,' (Q) ?C(h11Y11w2 (o, 1) + IIVh - 
UIIWP1(QO))) 
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Combining this with the previous estimate for y - Yh completes the proof. o 

Corollary 3.2. If the small-norm solution (y, u) E VJ of problem (2.9) satisfies 
(y, U) E W2 (0, 1) X WJ2(Q ) for p > 2 and e is sufficiently small, there is a 
constant C < oc and a strictly positive ho such that for all O < h < ho 

IU - UhIlW,(QO) + flY - YhII (ON1) < C h(11y1w2 (0O 1) + IIUIIw2( 0)). 

Proof. We have I^?U E 9e E Vh so the result follows from (3.5). 0 

4. CONCLUSIONS AND EXTENSIONS 

We have demonstrated optimal-order convergence of a finite element approx- 
imation for a model free-boundary problem using piecewise linear approxima- 
tion for both the field variable, u, and the free-surface representation function, 
y. It would therefore appear appropriate to choose the order of approximation 
to be the same in this case. 

We can extend this work to models involving the curvature of the free surface, 
instead of the expression given in the third line of (1. 1). This requires only the 
introduction of a nonlinearity in the bilinear form, b. The definition of b 
depends on the chosen parameterization of the free surface, but one particular 
case would be 

b~yx)~=sI y'(x)x'(x) d 
case would beb(y, X) := st [1 + Y?(X)2]1,2 dx. 

The model in differential form corresponds to the following equation for the 
free surface: 

s ([1+Y(X)2]/2) Anu(x, 1 [+ Yx + Y(X)2]12 Vx e [0, 1] 

With this replacement, the results in the previous sections would remain the 
same. If the equation for the free surface were 

-s ([1 +;(X2]1/2) = au(x, 1 + y(X)) VX E [O, 1], 

the extension operator Ey would be more complicated, namely, EYx would be 

an extension of x/[1 + y'(x)2]112 instead of just X, but the results would be 
similar. Other models (cf. [16]) could be treated similarly. 

Models for which the derivative of y are specified at the endpoints of the free 
surface are more complicated. Although Lemma 2.0 implies that the solution 
to both the continuous and discrete models will exist in this case, it is not clear 
that convergence will be optimal-order. The corresponding difficulty arises at 
the first step of the proof of Theorem 3.2 in that we can no longer assure 

that EXh - JhExh E W q(00). The discrete extension as defined here would 
necessarily be nonzero on one edge on the side boundary (where EXh vanishes), 
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assuming the test function, Xh, were not to vanish there. It may be possible to 
avoid this difficulty in some way, either by a different analysis or by a different 
choice of discrete extension. However, at the moment this is an open problem. 

We wish to develop a theory for more general models of viscous, incompress- 
ible flow. Formally, the techniques used to convert the free-boundary problem 
(1.1) in differential form can be used to develop a variational form for the full 
Navier-Stokes equations. However, a key result needed to prove the stability 
of the Galerkin method for the problem (1.1) is the bound for the maximum 
norm of the gradient for the Galerkin method applied to a scalar elliptic prob-, 
lem [21]. Such bounds are not yet known for the Stokes equations (cf. [12]), 
so such estimates need to be derived or an alternative technique needs to be 
developed. Another extension we wish to make is by proving local (quadratic) 
convergence of the Newton iteration (cf. [24]) and other efficient iterative pro- 
cedures for solving the discrete system corresponding to models such as these. 
Finally, variational formulations need to be developed for problems involving 
boundary data that are allowed to be nonzero at the point of attachment of the 
free surface to the boundary on which Dirichlet conditions are imposed. If care 
is not taken, such boundary conditions can be incompatible, leading to singular 
solutions. 
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